Math Matters!

Fourth Geade
 Summer Practice Packet
 Colonial School District

Promoting a Culture of Collaboration, Innovation and Inspiration

June 2019

Dear Parents/Guardians,

First, we would like to thank you for all of the additional support you offer at home. Education is a true partnership between school and family that is essential to a child's success.

As this school year comes to a close, we wanted to again encourage you to continue to reinforce and foster the mathematical skills and practices that have been developed this year by scheduling time for your child to work through this summer math packet. The activities were selected by our grade level experts with the key mathematical concepts of the school year in mind. The ultimate goal is to reinforce and strengthen the skills that will serve as building blocks for future learning. Also, remember that your child's DreamBox Learning account remains active over the summer months. This is another resource that will help your child continue to progress during the summer months. In addition to these resources, there are a wealth of others on our district website.

Wishing you a relaxing, yet exciting, math-filled summer!
Sincerely,

The Curriculum Department

Math is Everywhere.....

Summer is a perfect time to do math.
Here are some fun ways to keep your kids thinking math all summer long!

Basic Facts Practice

- TRAFFIC MATH - Challenge your child to find sets of numbers that they can multiply together. For example, two (or three) numbers on the license plate in front of you, a speed limit sign, a gas price sign, etc. Passengers can compete against each other for speed, highest product, lowest product, square numbers, etc.
- WHITE STRETCH LIMO-With your family, assign points to specific vehicles that you might pass on the road. When you are the first to spot the vehicle, you get that amount of points, and add them to your previous points. For example, a red pick-up truck is worth 15 pints, a yellow Volkswagen is 12 , a blue minivan is 11 , and a white stretch limo is 101 points. The first person to hit 200 points wins. Of course, there are infinite ways to assign points to increase or decrease difficulty, and points can be calculated mentally or with a paper and pencil.
- WAR-Play this card game as you normally do, but instead of flipping one card over, flip two and add or multiply the two together. The player with higher sum or product is the winner. OR, subtract the smaller number from the larger one and the larger difference is the winner. The winner is the player with the most cards at the end. (When playing card games use ace $=1$, jack $=11$, queen = 12, and king =13).
- WIPE OUT-Create a board with 12 squares (see right). Fill in the squares with the numbers 1-12 (or use greater numbers for a more challenging game). Choose 4 numbers from the board and record them below the board. "Wipe Out" the numbers in the game board by adding, subtracting, multiplying, and dividing the chosen numbers. You may use 2, 3, or all 4 of the numbers. You may not use a number more than once. When you get a number, cross it out on the board. You have won the game when all numbers are wiped out. (Example: $8 \times 2=16,16-10=6$)

1	2	3
4	5	$\mathbf{7}<$
7	8	9
10	11	12
$\underline{2} \underline{5} \underline{8}$	$\underline{10}$	

- TELEPHONITIS-Use the phone numbers of your family and friends. Add or multiply the digits of the numbers. Whose phone number has the greatest value? Whose has the least?

Money

- Let you child estimate the total cost of items you buy at the store. For an added challenge, estimate the tax too!
- Have your child figure out the change before the cashier gives it to you, and count it to be sure it is correct.
- At a restaurant or ice cream store, estimate the total bill and include your child in figuring out the tip.
- Grab a catalog and go shopping. Tell your child to pretend that they have $\$ 100$ to buy whatever they want. They must calculate exactly how much they have spent and how much they have left.
- SUPERMARKET SCAVENGER HUNT-Look at circulars and ads from different supermarkets and find the better deals at each store.
- Have your family members predict the amount of money you will spend on a shopping trip. Compare the actual amount spent to the estimates to see who was closest.

Measurement

- Ask your child to estimate the distances to regularly traveled places. Then use the odometer in your car to check the actual distances. As an alternative, ask your child to tell you when they think you have traveled one mile, then compare it to the actual measurement.
- At the supermarket, look at the labels of the items you buy and compare the weights. Grab a handful of fruit or vegetables and measure them on the scale. Always remember to estimate first.
- Have your child help you measure the ingredients when you cook.

Time

- When your child asks what time you will be leaving, tell them "in 5 minutes" and have them tell you what time that will be. OR do this in reverse - you give them the time and they tell you how many minutes until then.
- When they ask you what time it is, show them your watch instead of telling them the time.
- Ask your child to estimate the total time you will spend running an errand or set of errands. See how close they can get and watch their estimates improve with time.

Number Theory/Place Value

- CREATE A NUMBER - Each player chooses 3, 4, or 5 cards (no face value cards) from a deck of cards. Lay the cards flat side by side to create a 3, 4, or 5 digit numbers. The player with the larger (or smaller you choose) number is the winner. The player with the most cards at the end of the game is the winner. (Don't forget to ask questions like: how do you know that it is bigger (or smaller)? Listen for words like hundreds or thousands place and value.
- I'M THINKING OF A NUMBER - You and your children can make up riddles to stump each other. Try these: I'm thinking of a number. It is even. It is less than 10. 2 and 4 are factors of this number. What is the number? (8). OR I'm thinking of a number. It has 2 digits. The tens place digit is double the ones place digit. Both digits are multiples of 3 . What is the number? (63). (Use descriptions like: greater than, less than, even, odd, multiple of, factor of, double, triple, half of....).

Fractions

One of the keys to understanding fractions is to see that fractions are parts of wholes or parts of sets. You can talk about fractions with almost anything...

- FOOD FRACTIONS - Ask questions like....what fraction of the pizza is one slice? What fraction did you eat? What fraction is left?
- FAMILY FRACTIONS - Ask questions like...what fraction of our family is male? Female? Brown hair? Adults? You can do this at a picnic or on the beach, too.
- NAPKINS FRACTIONS - Fold paper napkins into equal pieces to find fractions. Start with halves and progress to eighths or sixteenths. Label the fractional parts and add or subtract the fractions.
- ANYTHING FRACTIONS - Grab a handful of cereal or blocks. Ask: find $\frac{1}{2}$ of the pile. How many is 1/3?....

Surf the Net

Here are some websites for you and your child to check out on rainy days...
www.coolmath4kids.com and www.coolmath.com
This site is an amusement part of math and especially designed for fun. The sites include lessons, games, brainteasers, and more.
www.aaamath.com
This site contains pages of basic math skills, interactive practice, explanations of concepts, and challenges. You can navigate through the site by grade level and/or topic

www.funbrain.com

This site includes math games sorted by age, topic, or specific skill. Parent/child challenges are included.
www.mathcats.com
This site is full of activities, games, crafts, flashcards, and story problems all with a focus of math and cats
www.brainpop.com
This site includes a mini movie to review a concept of your choice. Then a quiz is given to check for understanding. To log in use the following information:

Username: Backward Password: Forward

And....
Go to www.nctm.org and click on Families to find a list of parent math resource sites.

Dreambox Learning: go to www.colonialsd.org and click on STUDENTS in the upper left-hand corner of the page; click on Elementary School then on Math Resources; click your elementary school to go to the Dreambox log in page; have your child enter their student id number for both the username and the password

Math Words and Ideas

Multiplication
 Combinations (page 1 of 3)

Here are some ways to help you learn the multiplication combinations with products up to 50 .

Learning Two Combinations at a Time

5×3 and 3×5
These two problems look different, but they have the same answer.

When you know that $5 \times 3=15$, you also know that $3 \times 5=15$.

5×3

Learning the x 1 Combinations

Either you are thinking about one group ...
1 group of 9 equals 9 .

$1 \times 9=9$
\ldots or you are thinking about many groups of 1 .
6 groups of 1 equal 6.

$6 \times 1=6$

Learning the x 2 Combinations
Multiplying by 2 is the same as doubling a number.

$1]$	
1	

$8+8=16$

$8 \times 2=16$

Learning the x 0 Combinations

Many groups of 0 equal 0 .
$8 \times 0=0$
$0 \times 7=0$

Multiplication

Combinations (page 2 of 3)
Here are some ways to help you learn the multiplication combinations.

Double a Combination You Know

To learn the $X 4$ combinations, you can double the X2 combinations.

$$
4 \times 6=(2 \times 6)+(2 \times 6)=24
$$

To learn the X 6 combinations, you can double the X3 combinations.

$3 \times 3=9$
$6 \times 3=(3 \times 3)+(3 \times 3)=18$

Take Half of a Combination You Know

To learn the $X 5$ combinations, you can take half of the X10 combinations.

$4 \times 10=40$

$4 \times 5=20$

Multiplication
 Combinations (page 3 of 3)

As you practice the multiplication combinations, make lists of the ones you "just know" and the ones that you are "working on" learning.
\square "Combinations I Know" \quad "Combinations I'm Working On"

One way to practice a combination you're working on is to make a Multiplication Clue Card. Think of a combination you already know that you can start with to help you learn the harder one.

Here are the ways two students solved 4×8. Each student used a different strategy.

Noemi started with 4×4. Then she doubled it.

Gil started with 4×5. Then he added 4×3.

$$
\begin{aligned}
& 4 \times 5=20 \\
& 4 \times 3=\frac{12}{16}
\end{aligned}
$$

4×8
8×4

Start with: 4×5

Close to 100

Materials

- One deck of Numeral Cards
- Close to 100 Score Sheet for each player

Players: 1, 2, or 3

How to Play

1. Deal out six Numeral Cards to each player.
2. Use any four cards to make two numbers. For example, a 6 and a 5 could make 65 or 56 . Wild cards can be used any numeral. Try to make two numbers that, when added, give you a total that is close to 100.
3. Write these numbers and their total on the Close to 100 Score Sheet. For example: $42+56=98$.
4. Find your score. Your score is the difference between your total and 100. For example, if your total is 98 , your score is 2 .
5. Put the cards you used in a discard pile. Keep the two cards you didn't use for the next round.
6. For the next round, deal four new cards to each player. Make more numbers that come close to 100. When you run out of cards, mix up the discard pile and use them again.
7. After five rounds, total your scores. The Iowest score wins.

Scoring variation Write the score with plus and minus signs to show the direction of your total away from 100. For example: if your total is 98 , your score is -2 . If you total is 105 , your score is +5 . The total of these two scores would be +3 . Your goal is to get a total score for five rounds that is close to 0 .

Close to 100 Score Sheet

Numeral Cards (page 1 of 3)

0	0	1	1
0	0	1	1
2	2	3	3
2	2	3	3

Numeral Cards (page 2 of 3)

Numeral Cards (page 3 of 3)

Place the Point

Directions:

Number cards 1-9 are placed face down.
Each player places a marker on any number on the board.
Each player picks a card. He or she can move his or her marker one space on the board in any direction (vertically, horizontally, or diagonally) but must move to a space that contains the number on his or her card.
Points are determined by the value of that digit on the new space.
For example, if the player's marker is on 51,320 and that player draws a card with the number " 6 ", the player may move to the 42,768 space and earn 60 points or move to the 15,693 space and earn 800 points.

The winner of the game is the player with the most points at the end of the game.

51,320	42,768	12,964	81,725	25,678
15,693	59,824	34,651	26,176	56,821
13,246	39,267	84,153	98,675	36,845
43,587	21,498	38,721	75,892	89,643
53,621	42,187	64,527	52,487	97,123
15,234	63,879	79,541	45,623	28,759

RIDDLE 9

What did the farmer get when he tried to reach the beehive?

What to do

Round each number. Then use the Decoder to solve the riddle by filling in the spaces at the bottom of the page.

1. Round 7 to the nearest ten
2. Round 23 to the nearest ten \qquad
3. Round 46 to the nearest ten \qquad
4. Round 92 to the nearest ten
5. Round 203 to the nearest hundred \qquad
6. Round 420 to the nearest hundred \qquad
7. Round 588 to the nearest hundred \qquad
8. Round 312 to the nearest hundred \qquad
9. Round 549 to the nearest hundred \qquad
10. Round 710 to the nearest hundred \qquad
Decoder
400............. A
\qquad
11.

0

10
Y
25
E
500 ...I
210............. J
20................ L

40
C
700..............U
90................S
100............. T
600..............G
95.............. F
50.............. N
550.............. V
300.............. Z
7................. H

A "B $\overline{10} \overline{5} \overline{8} \overline{1} \overline{4} \overline{9} \overline{7} \overline{3} \overline{2}$
200
.

KEEPING TIME

DIRECTIONS

Tell how much time has elapsed
1.

Begin A.M.

End P.M.
2.

Begin A.M.

End P.M.

DIRECTIONS

Use the clocks to help you answer questions 3-5
3.

How many minutes pass from 1:20 P.M. to 1:55 P.M.

4.

How many hours pass from 9:00 A.M. to 2:00 P.M.?

IIRECTIONS

Solve the problem

6. Luis went outside to ride his bike at $3: 35$ P.M. His mother told him to be home by 4:10 P.M. How long did Luis have to ride his bike?
7.

What is the time when it is 30 minutes before 8:15 A.M.?

θ

RIDDLE 27

What to do

Find the answers. Then use the Decoder to solve the riddle by filling in the spaces at the bottom of the page.

1. It is $2 \mathrm{p} . \mathrm{m}$. What time will it be in 2 hours? \qquad
2. How many hours are between

3 p.m. and 8 p.m.? \qquad
3. How many hours are between

9 a.m. and 11:30 a.m.? \qquad
4. It's 10 a.m. What time will it be in 5 hours? \qquad
5. How many hours are between

8 a.m. and 4 p.m.? \qquad
6. It's $3 \mathrm{p} . \mathrm{m}$. What time will it be in 45 minutes? \qquad
7. It's $2: 15$ p.m. What time will it be in half an hour? \qquad
8. It's $7: 52$ p.m. What time was it 25 minutes earlier? \qquad
9. It's $6: 15$ p.m. What time will it be in 1 hour and 40 minutes?
10. It's 11:07 a.m. What time will it be in 2 hours and 30 minutes? \qquad

Decoder

2:45 p.m. ... S
7:27 a.m. ... A

8 hours ... F
2:30 p.m. ... W
$21 / 2$ hours ... I
1:37 p.m. ...R
8:17 p.m. ... G
7:55 p.m. ...W
3 hours ... 0
7:27 p.m. ... H
1:45 p.m. ...E
4 p.m. ... D
1:27 p.m. ...K
3:45 p.m. ... 0
2:15 p.m. ...T
2 p.m. .. $\quad \mathbf{Q}$
5 hours ... S
$11 / 2$ hours ...B
3 p.m. ... E

TH

$$
\begin{array}{lllllllll}
4 & \overline{2} & 9 & \overline{6} & 10 & 1 & 5 & \overline{3} & 7 \\
8
\end{array}
$$

What's for Lunch?

You have $\$ 6.00$ for lunch. Choose one of the restaurant menus and order three or more items for your lunch.

Restaurant: \qquad

Lunch order:
List the food and the price of each item. Then find the total cost.

Total cost: \$ \qquad

Change from \$6.00:

ANTOJITOS SABROSAS	
Taco (chicken, bean, or beef)	\$1.13
Burrito (chicken, bean, or beef)	1.59
Enchilada (chicken, bean, or beef)	1.38
Tamale (beef or pork)	1.59
Quesadilla	1.13
Refried beans	. 89
Rice	. 89
Tortillas de Harina (2 flour tortillas)	. 69
Tortillas de Maiz (2 corn tortillas)	. 49
Drinks	
Lemonade	. 78
Soda	. 78
Milk	. 65
Fruit Juice	. 93

CANTON EXPRESS

Soups

$\begin{array}{lr}\text { Egg Flower Soup } & \$ 1.23 \\ \text { Hot-and-Sour } & 1.34\end{array}$
Won-Ton 1.55

Entrees
Chicken Chow Mein 2.79
Moo Goo Gai Pan 3.59
Sweet-and-Sour BBQ Pork Ribs 3.79
Beef with Broccoli 2.98

Sides
Egg Roll . 95
Fried Won-Ton 1.19
Pork Fried Rice 1.45
Steamed Rice . 95

Beverages
Hot Tea/Coffee . 55
Iced Tea . 75
Soda . 85
Milk . 75

PIZZA AND PASTA

Pizza (by the slice)

Cheese \$1.28
Extra Toppings
mushrooms, tomatoes, black olives, green peppers, onions, pineapple, pepperoni,
sausage, salami, ground beef, anchovies

Pasta

Spaghetti with Tomato Sauce $\quad \$ 2.10$
Spaghetti with Meat Sauce2.56
Ravioli 2.37
Lasagna 2.88
Cannelloni 2.73
Extras
Green Salad 1.27
Garlic Bread 88
Beverages
Soda 80
Milk 70
Iced Tea 75
Coffee or Tea 75

SANDWICHES AND BURGERS

Sandwiches (White, wheat, or rye bread)
Peanut Butter and Jelly \$1.35
Egg Salad 1.45
Tuna Salad 1.55
Chicken Salad 1.65
Ham 1.75
Roast Beef 1.85
Corned Beef 1.95
Grilled Cheese 1.45
(Cheese can be added to the above for $15 ¢$
Burgers
Basic Burger 1.35
Basic Burger with Lettuce \&
Tomato
1.19

Cheeseburger 1.55
Cheeseburger with Lettuce \&
Tomato .95

Side Orders
Potato Chips or Doritos . 58
Coleslaw . 78
French Fries 1.12
Apple, Orange, and Bananas . 85

Drinks

Milk, Coffee, Tea, Lemonade, Soda, Root Beer,
Lemon-Lime, Ginger Ale, Orange Soda
Sm. $\$ 0.45 \quad$ Med. $\$ 0.65 \quad$ Lg. $\$ 0.85$

What to do

Find the answers. Then use the Decoder to solve the riddle by filling in the spaces at the bottom of the page.

1. A comic book costs $\$ 1.00$ How much do 3 comic books cost? \qquad
2. A magazine costs $\$ 5.00$. How much do 7 magazines cost?
3. A pack of gum costs 45 cents. You pay $\$ 1.00$.

How much change will you get back? \qquad
4. A soda costs 50 cents. How much do 2 sodas cost? \qquad
5. How much is $\$ 32.00+\$ 20.00$? \qquad
6. How much is $\$ 17.50+\$ 40.00$? \qquad
7. A notebook costs $\$ 2.25$. How much do 4 notebooks cost? \qquad
8. A shirt costs $\$ 16.75$. You pay for it with $\$ 20.00$. How much change do you get back? \qquad
9. How much is $\$ 100.00+\$ 38.00$? \qquad
10. How much is $\$ 220.00+102.00$? \qquad
I N S P A
91

10

RIDDLE 31

How do people with colds get plenty of exercise?

What to do

Find the answers. Then use the Decoder to solve the riddle by filling in the spaces at the bottom of the page.

1. What is the perimeter of this square? $4 \frac{4}{\square_{4}} 4$

2. What is the perimeter of this rectangle? $2 \square \frac{8}{8} 2$ \qquad
3. What is the perimeter of this triangle? ${ }^{3}$

\qquad
4. What is the perimeter of a square that is 10 inches long on one side? \qquad
5. A square's perimeter is 48 inches.

How long is one side of the square? \qquad
6. A triangle with three equal sides has a perimeter of 27 inches. How long is one side of the triangle? \qquad
7. Each side of a pentagon is 11 inches long.

What is the pentagon's perimeter? \qquad
8. What is the perimeter of this shape? ${ }^{6}$

9. A magazine is 11 inches long and 8 inches wide. What is the magazine's perimeter? \qquad

19.	0
74 inches	Q
$30 \ldots$	N
25.	A
38 inches..	I
12 inches...	S
40 feet...	X
9 inches...	N
15	B
74 feet..	R
16	E
10 feet...	D
20	R
22	A
32 inches..	L
37 feet..	M
40 inches..	U
55 inches..	S
$15 \ldots$	C

10. A lawn is 23 feet long and 14 feet wide. What is the lawn's perimeter? \qquad
T H E

Cute Quadrilaterals

Identifying Quadrilaterals

Directions: Identify each type of quadrilateral.

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad

Cute Quadrilaterals

Perimeters of Quadrilaterals

One way to compute the perimeter of a quadrilateral is to add the lengths of all four sides. This figure has a perimeter of 10 cm .

$$
\begin{array}{cc}
3 \mathrm{~cm}+2 \mathrm{~cm}+3 \mathrm{~cm}+2 \mathrm{~cm}=10 \mathrm{~cm} \\
P=10 \mathrm{~cm}
\end{array} \quad 2 \mathrm{~cm} \begin{array}{|c}
\\
\hline
\end{array}
$$

Directions: Label each geometric figure by the most precise name. Compute the perimeter of each figure. Remember to name the units - inches, centimeters, meters, etc.

1. \qquad

$$
P=
$$

\qquad
2. \qquad

$$
P=
$$

\qquad

3. \qquad

$$
P=
$$

\qquad
4. \qquad

$$
P=
$$

\qquad

5. \qquad

$$
P=
$$

\qquad
6. \qquad

$$
P=
$$

\qquad

7. \qquad

$$
P=
$$

\qquad
8. \qquad
$P=$ \qquad
\$

RIDDLE 8

What do cheerleaders
like to drink?

What to Do

Use the coordinates to identify points on the graph. Then use the point names to solve the riddle by filling in the blanks at the bottom of the page.

1. $(1,1)$ \qquad 6. $(2,5)$ \qquad
2. $(3,4)$ \qquad 7. $(0,3)$ \qquad
3. $(4,7)$ \qquad 8. $(1,7)$ \qquad
4. $(6,2)$ \qquad 9. $(7,6)$ \qquad
5. $(5,5)$ \qquad 10. $(5,0)$ \qquad

LOTS

$$
\begin{gathered}
\overline{5} \overline{9} \overline{2} \overline{6} \overline{8} \overline{1} \overline{4} \overline{7} \overline{10} \overline{3} \\
\text { What Do You Think? }
\end{gathered}
$$

Circle the more appropriate unit of measure for each example.

1. time needed to buy groceries

2. length of a leaf

3. time needed to build a fire

hours or minutes
4. weight of a pack
of gum

pounds or ounces
5. water in a fountain

6. length of a road

yards or miles
7. length of a ball of string

feet or miles
8. weight of an elephant

9. weight of a pencil

pounds or ounces
10. milk in a carton

teaspoons or pints

Pour It On

DIRECTIONS

Choose the appropriate unit of measure.
Write teaspoon, tablespoon, cup, pint, quart, or gallon.
1.

2.

3.

4.

\qquad
5.

6.

DIRECTIONS
 Circle the larger unit

7. 2 tsp or 2 tbsp
8. 4 pt or 4 c
9. 10 gal or 10 qt

DIRECTIONS

Change each sentence so it makes sense
10. Ellie uses 4 teaspoons of oatmeal to make cookies.
11. Regan pours a gallon of milk in his glass.

Solve the problem
12. José pours a cup of apple juice and 3 cups of grape juice into a large bottle. How many pints of juice are in the bottle?

The Long and Short of I \dagger

DIRECTIONS

Choose the appropriate unit for each. Write inches, feet, yards, or miles.

1. The length of an envelope is about 9 \qquad .
2. The length of a ramp is about 3 \qquad .

DIRECTIONS

Circle the longer unit
2. The height of the tree is about 40 \qquad .
4. The height of a mountain is about 9,257 \qquad .
5. 3 ft or 3 yd
6. 16 ft or 16 in
7. 23 mi or 23 yd
8. 400 in or 400 yd

DIRECTIONS

Use the table for questions 9-10
9. Which river is longer than 2,000 miles?
10. How long is the Snake River?

Length of U.S. Rivers	
River	Length in Miles
Ohio	1,310
Copper	286
Snake	1,040
Mississippi	2,340
Tennessee	886

DIRECTIONS

Solve this problem
11. Lana lives in Clarkville. She wants to go to Clear Valley by the shortest route. Will she Bruster or Capital City? Explain your answer.
\qquad
\qquad
\qquad

Weighing In

DIRECTIONS

Choose the appropriate unit to measure. Write ounce, pound, or ton.
1.

2.

\qquad
4.

5.

\qquad

DIRECTIONS

Circle the more reasonable measurement.
7.

1 oz or 1 lb
8.

7 lb or 70 lb

DIRECTIONS

Complete. You may use a calculator
10. $5 \mathrm{lb}=$ \qquad oz
11. $13 \mathrm{~T}=$ \qquad t
12. $64 \mathrm{oz}=$ \qquad lb
9.

5 oz or 25 oz

DIRECTIONS

Solve this problem
11. Rose's family recipe for muffins calls for 12 ounces of chopped apples to serve 4 people. How many pounds of chopped apples should Rose add to the batter to serve 16 people?

Think Thermometers

DIRECTIONS
Write the temperature that is shown on each thermometer.
1.

2.

3.

DIRECTIONS

Fill in the thermometer to show the temperature for each example.
4.

7.

5.

8.

6.

9.

RIDDLE 18

How does a farmer count his cows?

$$
\begin{array}{lllllllll}
\hline 3 & 6 & 9 & 2 & 4 & 7 & 8 & 10 & 1 \\
5
\end{array}
$$

Fraction War

Objectives

- Practice making proper fractions
- Practice comparing and ordering fractions

Materials

- 2 dice
- paper
- pencil

Players: 2

How to Play

1. Both players roll the 2 dice and create a proper fraction by making the lesser number the numerator and the greater number the denominator. Each records their fraction on their piece of paper.
2. The two players work together to compare their fractions. The player with the greater fraction is the winner and scores a point. If the fractions are equivalent, both players receive a point.
3. The game continues until time is up. The player with the most points is the winner.

Scoring variations:

Mixed numbers - Use three dice to make mixed numbers. Designate one dice for the whole number and the other two for the proper fraction. Compare your mixed numbers.

More than 2 players - For a three player game, the person with the greatest fraction gets three points, the middle gets two, and the least gets one.

Improper fractions - After the two dice are rolled, use the larger number as the numerator and the smaller one as the denominator.

Addition \& Subtraction - Instead of comparing the two fractions, make two fractions and add them or subtract the lesser from the greater. The player with the bigger or smaller fraction gets the point - you decide.

More addends - Roll the dice three times instead of two to get three fractions to add together.

Math Boxes 1

5.
a. Without measuring, estimate the length of this line segment to the nearest centimeter.
\qquad
About \qquad cm
b. Measure the line segment to the nearest centimeter.

About \qquad cm

Math Boxes 2

1. Complete the division facts.
a. $35 \div 5=$ \qquad
b. $56 \div$ \qquad $=8$
c. $32 \div$ \qquad $=4$
d. $24 \div$ \qquad $=6$
e. $72 \div 8=$ \qquad
f. $40 \div 5=$ \qquad
2. Complete the square facts.
a. $64 \div 8=$ \qquad
b. $49 \div 7=$ \qquad
c. $4^{*} 4=$ \qquad
d. $3^{*} 3=$ \qquad
e. $25 \div 5=$ \qquad
3. A grizzly bear can weigh 786 pounds. A black bear can weigh 227 pounds. What is their combined weight?
\qquad pounds
4. Complete the multiplication facts.
a. $4^{*} 7=$ \qquad
b. 3 * \qquad $=15$
c. 7 * \qquad $=42$
d. 9 * \qquad $=36$
e. $6 * 0=$ \qquad
f. 1 * $9=$ \qquad
5. Tell whether each number sentence is true or false.
a. $46+12=53$ \qquad
b. $36=22+14$ \qquad
c. $13=84-71$ \qquad
d. $52-20=34$ \qquad
6. On the average, India produces about 851 movies per year. The United States produces about 569 movies. On the average, how many fewer movies per year does the United States produce than India?

Math Boxes 3

